1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
//! # Functor composition via the Co-Yoneda Lemma //! //! ## Functors in Rust //! //! Let's implement functors in Rust! //! //! Working around the lack of higher-kinded types, our trait for a functor //! will look something like this: //! //! ``` //! pub trait Param { type Param; } //! pub trait ReParam<B>: Param { type Output: Param<Param=B>; } //! pub trait Functor<'a, B>: ReParam<B> { //! fn fmap<F: Fn(Self::Param) -> B + 'a>(self, F) -> Self::Output; //! } //! ``` //! //! This works great as long as we write functions that take specific //! types which are functors, but it is not possible to write a function //! operating on a generic functor type and using `fmap` more than once. //! For example, the following will not compile: //! //! ``` //! fn add_and_to_string<'a, F>(x: F) -> <F as ReParam<String>>::Output //! where F: Param<Param=i32> + Functor<'a, i32> + Functor<'a, String> { //! x.fmap(|n: i32| n + 1) //! .fmap(|n: i32| n.to_string()) //! } //! ``` //! //! While functors in general can be encoded to some extend //! in Rust's trait system, what we can't encode for a lack of higher-kinded //! types, is the fact that a functor `Box` maps a function between `A` and `B` //! to a function between `Box<A>` and `Box<B>`, not between `Box<A>` and `Option<B>`. //! //! Especially when looking at functor composition, it is useful to //! be able to encode this fact, because it allows us to chain //! multiple calls to `fmap`, knowing that the result is also a functor, //! and can be `fmap`'ed further. //! //! ## The Co-Yoneda Lemma //! //! Let's define a data type called `Coyoneda`: //! //! ``` //! pub struct Coyoneda<'a, T: Param, B> { //! point: T, //! morph: Fn(T::Param) -> B + 'a //! } //! ``` //! //! This datatype is a functor, which uses function composition //! to accumulate the mapping function, without changing the captured //! `T`. The implementation for `Functor` is trivial: //! //! ``` //! impl<'a, T: Param, B, C> Functor<'a, C> for Coyoneda<'a, T, B> { //! type Output = Coyoneda<'a, T, C>; //! fn fmap<F: Fn(B) -> C + 'a>(self, f: F) -> Coyoneda<'a, T, C> { //! let g = self.morph; //! Coyoneda{point: self.point, morph: move |x| f(g(x))} //! } //! } //! ``` //! //! The co-yoneda lemma states that for a covariant functor `f`, //! this `Coyoneda f` is naturally isomorphic to `f`. //! Practically speaking, this means that we can lift any `f a` into a `Coyoneda f a`, //! and given a function `(a -> b) -> f b`, we can retrieve back a `f b` from a `Coyoneda f b`. //! //! ## Composing Coyoneda //! //! Now here's the catch: Since we have a parameterized datatype that is isomorphic to any functor, //! we can lift functors into Coyoneda to compose them safely within Rust's type system! //! //! For example, let's implement a function that is generic for any functor, //! by operating on our `Coyoneda` type: //! //! ``` //! fn add_and_to_string<T: Param>(y: Coyoneda<T, i32>) -> Coyoneda<T, String> { //! y.fmap(|n: i32| n + 1) //! .fmap(|n: i32| n.to_string()) //! } //! ``` //! //! Given we implemented a functor for `Option`, we can now do the following: //! //! ``` //! let y = add_and_to_string(From::from(Some(42))); //! assert_eq!(y.unwrap(), Some("43".to_string())) //! ``` //! //! ... or for `Box`: //! //! ``` //! let y = add_and_to_string(From::from(Box::new(42))); //! assert_eq!(y.unwrap(), Box::new("43".to_string())) //! ``` //! //! ... and for every other functor as well. Yay! extern crate functor; extern crate morphism; use morphism::Morphism; use functor::{Covariant, NaturalTransform}; use functor::parametric::{Param, ReParam}; pub struct Coyoneda<'a, T: Param, B> { point: T, morph: Morphism<'a, T::Param, B> } impl<'a, T: 'a + Param, B: 'a> Coyoneda<'a, T, B> { pub fn unwrap(self) -> <T as ReParam<B>>::Output where T: Covariant<'a, B>, <T as Param>::Param: 'a { let m = self.morph; T::fmap(self.point, move |a| { m.run(a) }) } } impl<'a, T: Param, B> Param for Coyoneda<'a, T, B> { type Param = B; } impl<'a, T: Param, B, C> ReParam<C> for Coyoneda<'a, T, B> { type Output = Coyoneda<'a, T, C>; } impl<'a, T: Param, B, C> Covariant<'a, C> for Coyoneda<'a, T, B> { fn fmap<F: Fn(B) -> C + 'a>(self, f: F) -> Coyoneda<'a, T, C> { Coyoneda{point: self.point, morph: self.morph.tail(f)} } } impl<'a, T: Param> From<T> for Coyoneda<'a, T, <T as Param>::Param> { fn from(x: T) -> Coyoneda<'a, T, <T as Param>::Param> { Coyoneda{point: x, morph: Morphism::new()} } } impl<'a, T, U, B> NaturalTransform<Coyoneda<'a, U, B>> for Coyoneda<'a, T, B> where T: Param + NaturalTransform<U>, U: Param<Param=T::Param> { fn transform(self) -> Coyoneda<'a, U, B> { Coyoneda{point: self.point.transform(), morph: self.morph} } } mod test { #![cfg(test)] use super::*; use functor::{Covariant, NaturalTransform}; use functor::parametric::Param; fn add_and_to_string<T: Param>(y: Coyoneda<T, i32>) -> Coyoneda<T, String> { y.fmap(|n: i32| n + 1) .fmap(|n: i32| n.to_string()) .fmap(|s| s + "foo") .fmap(|s| s + "bar") } #[test] fn fmap_box() { let x = Box::new(42); let y = add_and_to_string(From::from(x)); assert_eq!(y.unwrap(), Box::new("43foobar".to_string())) } #[test] fn fmap_option() { let x = Some(42); let y = add_and_to_string(From::from(x)); assert_eq!(y.unwrap(), Some("43foobar".to_string())) } #[test] fn fmap_result() { let x: Result<i32, ()> = Ok(42); let y = add_and_to_string(From::from(x)); assert_eq!(y.unwrap(), Ok("43foobar".to_string())) } #[test] fn natural_transform_box_to_option() { let x = Box::new(42); let y = add_and_to_string(From::from(x)); let z = y.transform(); assert_eq!(z.unwrap(), Some("43foobar".to_string())) } #[test] fn natural_transform_result_to_option() { let x: Result<i32, ()> = Ok(42); let y = add_and_to_string(From::from(x)); let z = y.transform(); assert_eq!(z.unwrap(), Some("43foobar".to_string())) } }